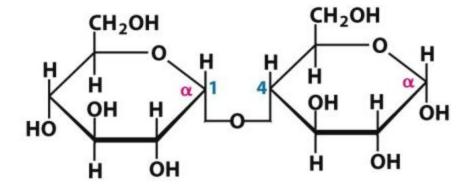
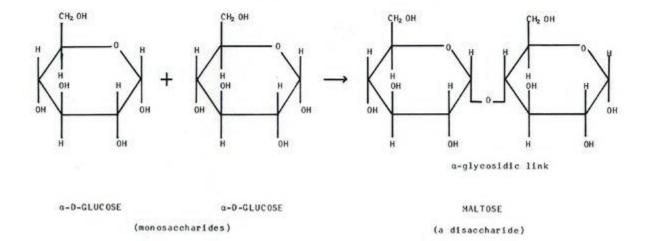
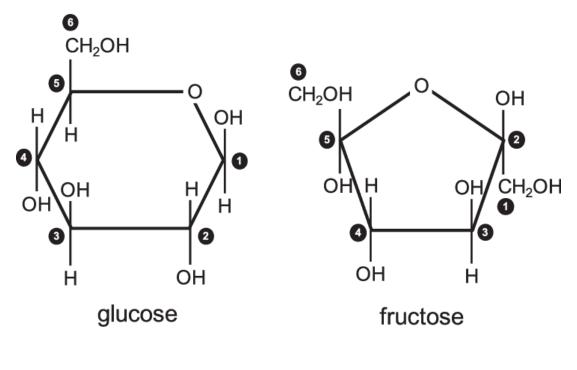

International Baccalaureate Higher Level Biology:

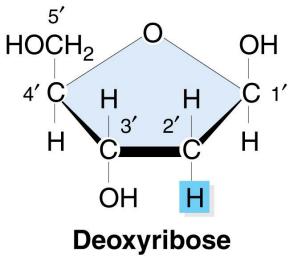

- 1. Google Classroom Code: 6ew2r75
- 2. Pacing (2 years)
- 3. Summer assignments:
 - a. Reading and understanding will help you, as this class is an extremely fast pace class
 - I. Read Topics 1.1, 1.2 and 1.3 in the IB books
 - II. Read Topic 2, 3, 4 and 5 in the AP book (much easier to follow, although more pages)
 - III. Be able to draw and identify the following molecules:
- a. Alpha glucose
- b. Beta Glucose
- c. Ribose
- d. Deoxyribose
- e. glycerol
- f. saturated fatty acid
- g. monounsaturated fatty acid
- h. Polyunsaturated fatty acid
- i. ATP
- j. Functional Groups
 - 1. Hydroxyl
 - 2. Amine (amino)
 - 3. Carboxyl
 - 4. Phophate
 - 5. Carbonyl
- h. What two monosaccharides make up the following disaccharides
 - 1. Maltose
 - 2. Lactose
 - 3. Sucrose
- i. Draw, label and explain a single amino acid
- j. Difference between a condensation reaction (dehydration synthesis) and Hydrolysis
- k. Draw the formation of a dipeptide
- I. Draw the formation of a triglyceride
- m. Draw the formation of a dinucleotide
- o. Draw a nucleotide
- p. Identify the two purines
- q. Identify the three pyrimidines

***** By doing this over the summer, it will tremendously help you eventually understand the material come your ENTIRE time in HL Biology. There is not a test or anything to turn in the first day of class, but usually there will be a test the second week of class!

Below are some diagrams that may help you!


Group	Structural Formula	Ball-and- Stick Model	Found In
Hydroxyl	-он	-O-H	Carbohydrates
Carbonyl	_c=o	00	Lipids
Carboxyl	-c OH	-00 0-H	Proteins
Amino	-N H	H	Proteins
Phosphate	-0-P-0- 0		DNA, ATP





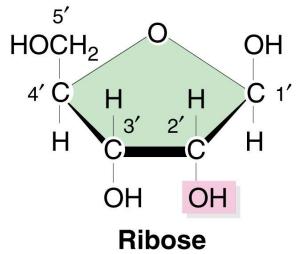
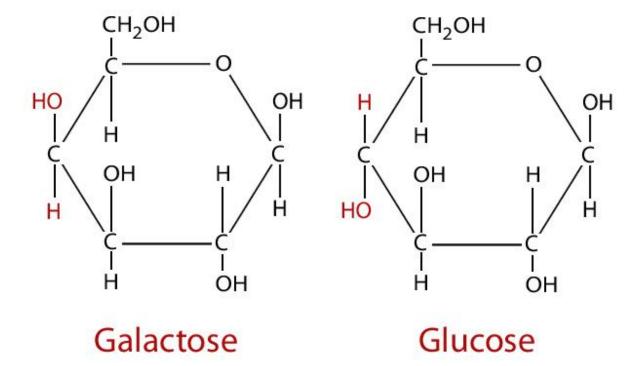
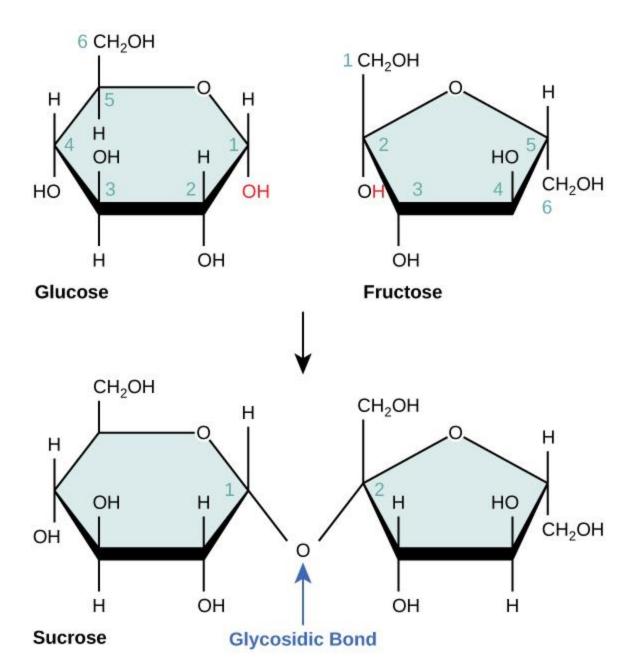


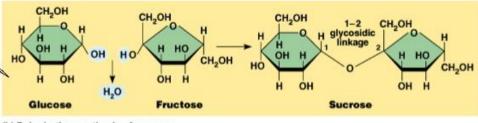
FIG. 25.4. Formation of the glycosidic link





© 2010 Pearson Education, Inc.

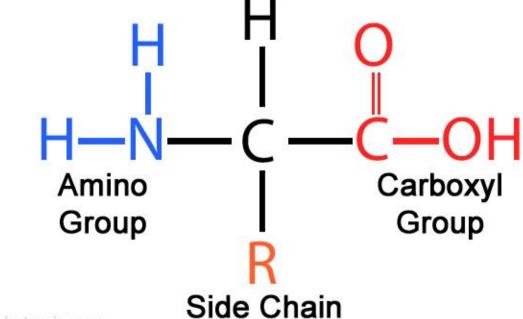
@Nutrientsreview.com


Hydrolysis of maltose

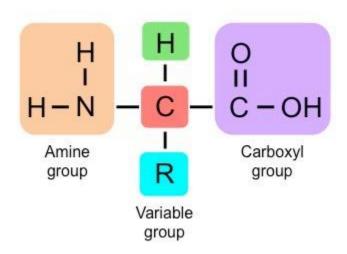
Disaccharide Formation and Structure

 Disaccharides are formed when two monosaccharides are joined by dehydration synthesis reaction.

(a) Dehydration synthesis of maltose

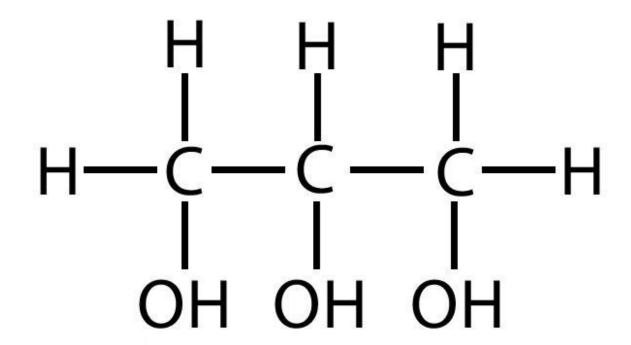

(b) Dehydration synthesis of sucrose
Copyright © Pearson Education, Inc., publishing as Benjamin Cummings

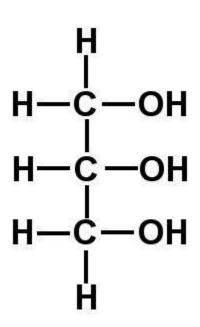
Amylose: α -(1 \rightarrow 4)-glucan; average n = ca. 1000. The linear molecule may carry a few occasional moderately long chains linked α -(1 \rightarrow 6).


Amylopectin:
$$\alpha$$
-(1 \rightarrow 6) branching points. For exterior chains a = ca. 12-23. For interior chains b = ca. 20 - 30. Both a and b vary according to the botanical origin.

Amino Acid

Amino Acid Structure

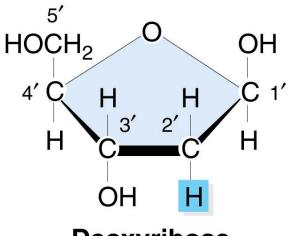

©Nutrientsreview.com



		AMINO ACID	
Nonpolar, aliphatic R groups	Glycine COO^{-} $H_{3}\overset{+}{N}-C-H$ CH_{2} CH $CH_{3}CH_{3}$	$\begin{array}{c} \text{COO}^-\\ \text{I}\\ \text{H}_3\text{N}-\text{C}-\text{H}\\ \text{CH}_3\\ \end{array}$ Alanine $\begin{array}{c} \text{COO}^-\\ \text{I}\\ \text{H}_3\text{N}-\text{C}-\text{H}\\ \text{I}\\ \text{CH}_2\\ \text{I}\\ \text{CH}_2\\ \text{I}\\ \text{CH}_2\\ \text{I}\\ \text{S}\\ \text{I}\\ \text{CH}_3\\ \end{array}$ Methionine	CH ₃ CH ₃ Valine COO ⁻ H ₃ N - C - H H - C - CH ₃ CH ₂ CH ₃
Polar, uncharged R groups	$\begin{array}{c} \text{COO}^-\\ \text{H}_3\text{N} - \text{C} - \text{H}\\ \text{I}\\ \text{CH}_2\text{OH} \end{array}$ Serine $\begin{array}{c} \text{COO}^-\\ \text{I}\\ \text{H}_2\text{N} & \text{CH}_2\\ \text{I}\\ \text{I}\\ \text{H}_2\text{C} - \text{CH}_2 \end{array}$ Proline	Threonine	CH ₂ I SH Cysteine COO^{-} H ₃ N $-$ C $-$ H CH ₂ I CH ₂ I CH ₂ I CH ₂ O

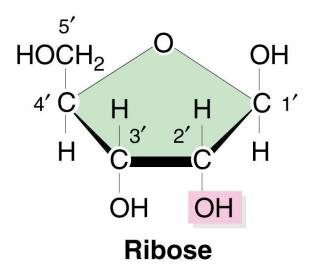
		AMINO ACID	
Positively charged R groups	$COO^ I$ $H_3N - C - H$ CH_2 I	COO^{-} $H_3N - C - H$ CH_2 $CH_$	COO $^-$ I H ₃ N $^+$ C $^-$ H CH ₂ C $^-$ NH+ CH CH
Negatively charged R groups	C H ₃ N — C I C	H ₂	$COO^ \stackrel{+}{N} - C - H$ $\stackrel{-}{I}$ CH_2 $\stackrel{-}{I}$ CH_2 $\stackrel{-}{I}$ COO^- Glutamate
Nonpolar, aromatic R groups	COO- H ₃ N - C - H CH ₂	COO- H ₃ N - C - H CH ₂ OH	COO- H ₃ N - C - H I CH ₂ NH

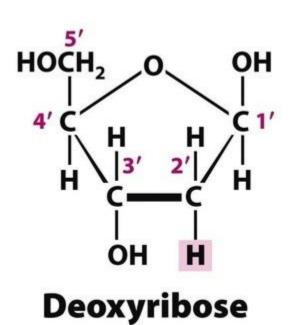
Lipids

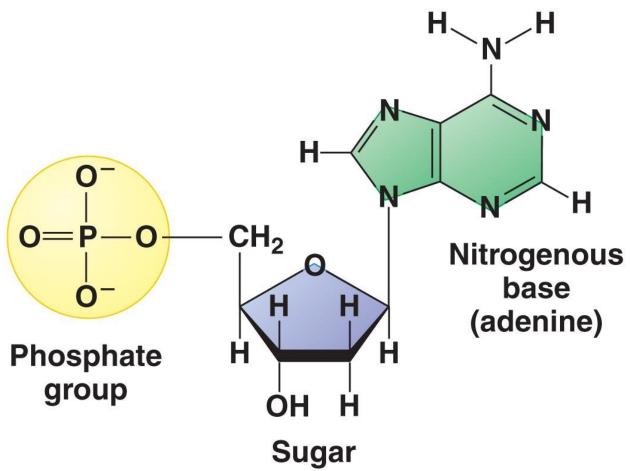


Formation of a dipeptide produces a molecule of water, therefore...

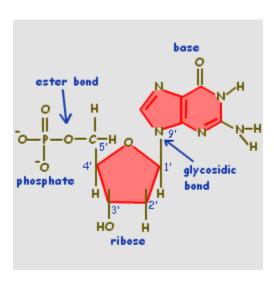
...this is a condensation reaction

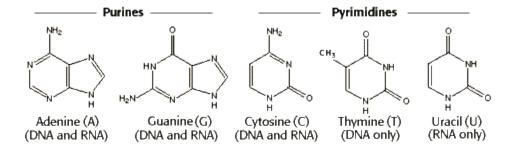

H N
$$=$$
 C $=$ C OH R $=$ C OH R

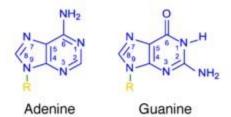

2 amino acids → dipeptide + water



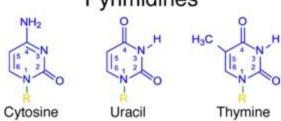
Deoxyribose

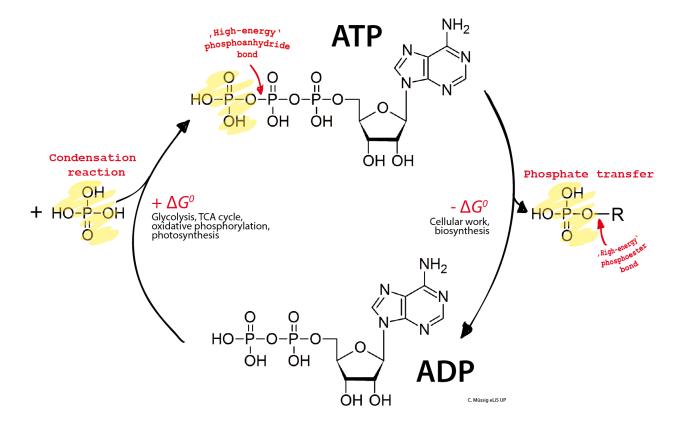

© 2010 Pearson Education, Inc.



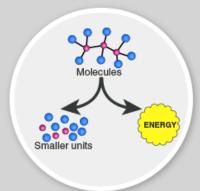


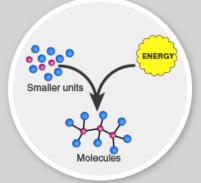
Copyright © 2009 Pearson Education, Inc.

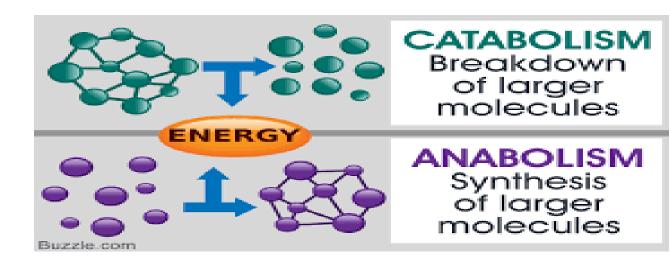




Purines


Pyrimidines


DIFFERENCES BETWEEN CATABOLISM AND ANABOLISM


CATABOLISM

CATABOLISM IS THE SET OF METABOLIC
PATHWAYS THAT BREAKS DOWN MOLECULES
INTO SMALLER UNITS THAT ARE EITHER OXIDIZED
TO RELEASE ENERGY OR USED IN OTHER
ANABOLIC REACTIONS.

ANABOLISM

ANABOLISM IS THE SET OF METABOLIC PATHWAYS THAT CONSTRUCT MOLECULES FROM SMALLER UNITS, THESE REACTIONS REQUIRE ENERGY, KNOWN ALSO AS AN ENDERGONIC PROCESS.

Anabolic examples

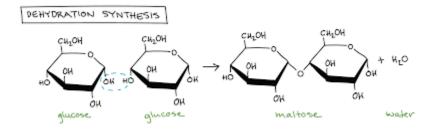
DNA synthesis

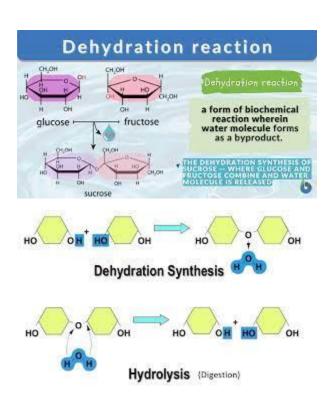
Protein Synthesis

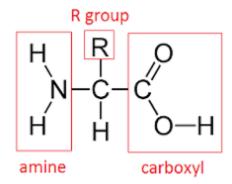
Steroids
PHOTOSYNTHESIS
Formation of a dipeptide
ATP Synthesis
Carbon Fixation (light independent) CO2 to first stable sugar molecule
Catabolic
Digestive system

Formation of a larger sugar (mono to di or poly)

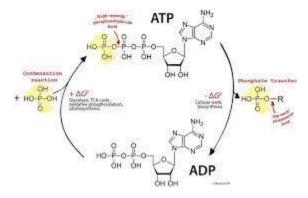
ANABOLISM VERSUS CATABOLISM


CATABOLISM				
Anabolism is the metabolic process where simple substances are synthesized into complex molecules	Catabolism is the metabolic process which breaks down large molecules into smaller molecules			
Constructive phase of metabolism	Destructive phase of metabolism			
Requires ATP energy	Releases ATP energy			
Endergonic reaction	Exergonic reaction			
Estrogen, testosterone, growth hormone, insulin, etc. are involved	Adrenaline, cortisol, glucagon, cytokines, etc. are involved			
Does not utilize oxygen	Utilizes oxygen			
Functional at resting or sleeping	Functional at body activities			
Kinetic energy is converted into potential energy	Potential energy is converted into kinetic energy			
Occurs during photosynthesis in plants,	Occurs during cellular respiration, digestion, and			


protein synthesis,


glycogen synthesis and assimilation in animals

www.pediaa.com


excretion

DIPEPTIDE

Carbohydrates

General molecular formula: Cn Han On

1:2:1

When we say macromolecules what does that mean? It means huge molecular mass (hundreds or thousands of units joined together to form one huge molecule)

What is a Monomer?

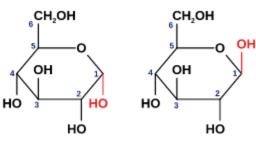
Is the individual unit of a long chain, that keeps repeating e.g.: glucose

What is a Polymer?

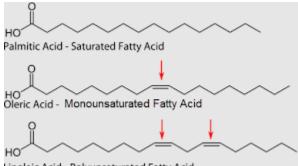
Is a long chain of repeated units (monomers)

e.g.: Amylose

- 3. Simple carbohydrates (monosaccharides) have the general formula $(CH_2O)_n$ (hydrates of carbons). Glucose has the formula $C_6H_{12}O_6$ and the Fischer projection (open chain form) and Haworth projection (cyclic, hemiacetal form in solution) are shown below.
- a. Propose a mechanism (draw arrows) for the formation of the hemiacetal form (right) of glucose from the open chain form (left).
- b. Identify the new chiral center formed in the Haworth projection (right structure).


Definition - Carbohydrates are sugar polymers Carbohydrate = Carbon + Water

or C₆H₁₂O₆


Alpha-(α) Glucose

Beta-(β) Glucose

Fatty acids

- They all have a carboxyl group (-COOH) at one end and a methyl group (CH₃-) at the other end.
- A fatty acid has the general formula:
 CH3-(CH2)n-COOH where n is typically an even number between 12 and 22
- If no double bonds are present the molecule is called a saturated fatty acid.
- If a chain contains double bonds, it is called an unsaturated fatty acid.

Polyunsaturated Fat

Linoleic Acid - Polyunsaturated Fatty Acid

$$CH_{3}(CH_{2})_{5} C = C \begin{pmatrix} (CH_{2})_{7}COOH \\ H \end{pmatrix} CH_{3}(CH_{2})_{5} C = C \begin{pmatrix} (CH_{2})_{7}COOH \\ H \end{pmatrix}$$

$$CH_{3}(CH_{2})_{5} C = C \begin{pmatrix} (CH_{2})_{7}COOH \\ H \end{pmatrix}$$

$$CH_{3}(CH_{2})_{5} C = C \begin{pmatrix} (CH_{2})_{7}COOH \\ H \end{pmatrix}$$

$$CH_{3}(CH_{2})_{5} C = C \begin{pmatrix} (CH_{2})_{7}COOH \\ H \end{pmatrix}$$